

 Vol. 2 No. 01 Tahun 2026 Page [128-141]

 128

Pengaruh Penerapan Prinsip SOLID Dan Design Patterns

Terhadap Maintainability Kode Sumber Perangkat Lunak

1Abdul Jabbar 2Abdullah
1,2Politeknik IDN Bogor, Indonesia

Email: akujaber12@gmail.com

Abstrak
Maintainability merupakan salah satu atribut kualitas perangkat lunak yang sangat penting, terutama dalam
pengembangan sistem berskala menengah hingga besar. Kode sumber yang sulit dipelihara akan meningkatkan biaya
pengembangan, memperlambat proses perbaikan, serta menyulitkan pengembangan fitur baru. Permasalahan ini
umumnya disebabkan oleh struktur kode yang kompleks, tingkat ketergantungan antar modul yang tinggi, serta
desain perangkat lunak yang tidak terorganisasi dengan baik. Penelitian ini bertujuan untuk menganalisis pengaruh
penerapan prinsip SOLID dan design patterns terhadap maintainability kode sumber perangkat lunak. Metode
penelitian yang digunakan adalah pendekatan kualitatif deskriptif dengan studi kasus pada kode sumber perangkat
lunak yang mengalami proses refactoring. Analisis dilakukan dengan membandingkan kondisi kode sebelum dan
sesudah penerapan prinsip SOLID serta design patterns seperti Factory dan Strategy, dengan fokus pada aspek
keterbacaan, modularitas, fleksibilitas, dan kemudahan pemeliharaan. Hasil penelitian menunjukkan bahwa
penerapan prinsip SOLID mampu menurunkan kompleksitas desain dan meningkatkan pemisahan tanggung jawab
kelas, sementara design patterns berkontribusi dalam meningkatkan fleksibilitas dan kemudahan pengembangan
lanjutan. Meskipun terjadi peningkatan jumlah kelas dan abstraksi, kualitas desain kode secara keseluruhan
mengalami peningkatan yang signifikan. Temuan ini menegaskan bahwa maintainability lebih ditentukan oleh
kualitas desain daripada kuantitas baris kode. Dengan demikian, penelitian ini memberikan kontribusi teoretis dan
praktis bahwa penerapan prinsip SOLID dan design patterns secara konsisten dapat menjadi solusi efektif dalam
meningkatkan maintainability perangkat lunak.

Kata kunci: SOLID Principle, Design Patterns, Maintainability, Refactoring, Kualitas Perangkat Lunak.

Abstract
Maintainability is one of the most critical software quality attributes, particularly in the development of medium- to
large-scale systems. Poorly maintainable source code can lead to increased development costs, slower bug fixing
processes, and difficulties in extending system functionality. These issues are commonly caused by high code complexity,
tight coupling between modules, and poorly structured software design. This study aims to analyze the impact of
implementing SOLID principles and design patterns on software source code maintainability. The research adopts a
descriptive qualitative approach using a case study of software source code that underwent a refactoring process. The
analysis compares the conditions of the code before and after the implementation of SOLID principles and design patterns
such as Factory and Strategy, focusing on readability, modularity, flexibility, and ease of maintenance. The results
indicate that the application of SOLID principles significantly reduces design complexity and improves the separation of
class responsibilities, while design patterns enhance system flexibility and support future feature development. Although
the refactoring process increases the number of classes and abstractions, it leads to a substantial improvement in overall
code quality and readability. These findings confirm that maintainability is determined not by the number of lines of code,
but by the quality and organization of software design. Therefore, this study provides both theoretical and practical
evidence that consistent application of SOLID principles and design patterns is an effective approach to improving
software maintainability.

Keywords: SOLID Principles, Design Patterns, Maintainability, Refactoring, Software Quality.

mailto:akujaber12@gmail.com

 129

PENDAHULUAN

Perkembangan teknologi informasi yang semakin pesat telah

mendorong lahirnya berbagai perangkat lunak dengan tingkat kompleksitas

yang tinggi. Perangkat lunak tidak lagi hanya berperan sebagai alat pendukung

operasional, tetapi telah menjadi komponen strategis dalam hampir seluruh

sektor, seperti bisnis, pendidikan, pemerintahan, dan industri. Kondisi ini

menuntut perangkat lunak untuk tidak hanya memenuhi kebutuhan

fungsional pengguna, tetapi juga memiliki kemampuan adaptasi yang baik

terhadap perubahan, mudah dikembangkan, serta efisien dalam jangka

panjang. Perubahan kebutuhan pengguna, evolusi teknologi, dan tuntutan

peningkatan fitur menjadikan keberlanjutan perangkat lunak sebagai

tantangan utama dalam proses pengembangannya (Saad, A. 2025).

Dalam siklus hidup pengembangan perangkat lunak, fase pemeliharaan

(maintenance) memegang peranan yang sangat penting. Berbagai penelitian

dalam bidang rekayasa perangkat lunak menunjukkan bahwa sebagian besar

biaya dan waktu pengembangan justru dihabiskan pada tahap pemeliharaan

dibandingkan dengan tahap perancangan dan implementasi awal (Shrestha, J.

2025). Aktivitas pemeliharaan mencakup perbaikan kesalahan, penyesuaian

terhadap perubahan lingkungan, peningkatan kualitas, serta pengembangan

fitur baru. Oleh karena itu, kualitas kode sumber menjadi faktor penentu

utama dalam efektivitas proses pemeliharaan dan keberlanjutan suatu

perangkat lunak (Azhizi, M. H., & Yaqin, M. A. 2024).

Salah satu atribut kualitas perangkat lunak yang sangat berpengaruh

terhadap keberhasilan pemeliharaan adalah maintainability. Maintainability

mengacu pada sejauh mana kode sumber dapat dipahami, dianalisis,

dimodifikasi, diuji, dan dikembangkan kembali dengan usaha yang relatif

minimal. Kode sumber yang memiliki tingkat maintainability tinggi

memungkinkan pengembang untuk melakukan perubahan secara lebih cepat

dan aman, baik oleh pengembang awal maupun oleh pengembang lain yang

 130

terlibat di kemudian hari. Sebaliknya, kode dengan maintainability rendah

cenderung sulit dipahami, memiliki struktur yang kompleks, serta

meningkatkan risiko munculnya kesalahan baru ketika dilakukan perubahan

(Rhamadhan, W. S., Daniyudin, J., El Sofya, Dkk., 2025).

Dalam praktik pengembangan perangkat lunak, permasalahan

rendahnya maintainability sering kali disebabkan oleh fokus pengembangan

yang lebih menitikberatkan pada pencapaian fungsi bisnis jangka pendek.

Tekanan tenggat waktu, keterbatasan sumber daya, serta kurangnya

perhatian terhadap kualitas desain mengakibatkan kode sumber

dikembangkan tanpa struktur yang baik. Kode yang tidak memiliki pemisahan

tanggung jawab yang jelas, memiliki ketergantungan yang tinggi antar modul,

dan minim perencanaan desain akan menyulitkan proses pengujian,

refactoring, serta pengembangan lanjutan. Kondisi ini pada akhirnya

berdampak pada meningkatnya kompleksitas kode dan tingginya biaya

pemeliharaan (Kevin, A., & Kurniawan, H. C. 2025).

Permasalahan tersebut menunjukkan pentingnya penerapan prinsip

desain perangkat lunak yang mampu mengelola kompleksitas dan

meningkatkan kualitas struktur kode sumber. Dalam disiplin rekayasa

perangkat lunak, prinsip SOLID dan design patterns diperkenalkan sebagai

pendekatan desain yang bertujuan untuk menghasilkan perangkat lunak yang

modular, fleksibel, dan mudah dipelihara. Prinsip SOLID, yang terdiri dari

Single Responsibility Principle, Open/Closed Principle, Liskov Substitution

Principle, Interface Segregation Principle, dan Dependency Inversion Principle,

menekankan pada pemisahan tanggung jawab, pengurangan ketergantungan

antar komponen, serta peningkatan fleksibilitas desain. Sementara itu, design

patterns menyediakan solusi desain yang telah teruji dan dapat digunakan

kembali untuk menyelesaikan permasalahan umum dalam pengembangan

perangkat lunak (Alhunaiti, S. A. B. A., & Khan, M. S. 2023).

 131

Secara konseptual, penerapan prinsip SOLID dan design patterns

diyakini mampu meningkatkan kualitas dan maintainability kode sumber.

Namun, dalam praktiknya penerapan kedua konsep tersebut masih belum

dilakukan secara konsisten oleh banyak pengembang. Selain itu, kajian

empiris yang secara khusus mengukur pengaruh penerapan prinsip SOLID dan

design patterns terhadap maintainability kode sumber menggunakan metrik

perangkat lunak yang terukur masih relatif terbatas. Oleh karena itu,

diperlukan penelitian yang mampu memberikan bukti empiris mengenai

sejauh mana penerapan prinsip SOLID dan design patterns berpengaruh

terhadap maintainability kode sumber perangkat lunak.

METODE PENELITIAN

Penelitian ini menggunakan pendekatan kuantitatif dengan desain

eksperimen semu (quasi-experimental) untuk menganalisis pengaruh

penerapan prinsip SOLID dan design patterns terhadap maintainability kode

sumber perangkat lunak. Objek penelitian berupa kode sumber perangkat

lunak yang dikembangkan dalam dua kondisi, yaitu sebelum dan sesudah

penerapan prinsip SOLID dan design patterns. Pada tahap awal, kode

dikembangkan atau dianalisis tanpa menerapkan prinsip desain tersebut.

Selanjutnya, kode sumber dilakukan proses refactoring dengan menerapkan

prinsip SOLID dan beberapa design patterns yang relevan, tanpa mengubah

fungsi utama sistem. Pendekatan ini bertujuan untuk memastikan bahwa

perbedaan maintainability yang dihasilkan benar-benar disebabkan oleh

perubahan pada struktur dan desain kode (Hilalludi., 2024).

Pengukuran maintainability dilakukan menggunakan metrik perangkat

lunak yang bersifat objektif dan terukur, meliputi Maintainability Index,

Cyclomatic Complexity, Coupling Between Objects, dan Lines of Code. Data yang

diperoleh dari kedua kondisi kode kemudian dianalisis secara deskriptif dan

komparatif untuk mengidentifikasi perubahan tingkat maintainability. Hasil

analisis digunakan untuk menilai sejauh mana penerapan prinsip SOLID dan

 132

design patterns berkontribusi dalam menurunkan kompleksitas, mengurangi

ketergantungan antar modul, serta meningkatkan kemudahan pemeliharaan

kode sumber perangkat lunak.

HASIL DAN PEMBAHASAN

Kondisi Maintainability Kode Sumber Sebelum Penerapan Prinsip SOLID

dan Design Patterns

Hasil analisis awal terhadap kode sumber perangkat lunak yang

dikembangkan tanpa penerapan prinsip SOLID dan design patterns

menunjukkan bahwa tingkat maintainability berada pada kondisi yang relatif

rendah. Struktur kode sumber cenderung bersifat kompleks dan kurang

terorganisasi, di mana satu kelas sering kali menangani lebih dari satu

tanggung jawab fungsional. Fenomena ini mencerminkan pelanggaran

terhadap Single Responsibility Principle, yang secara teoritis menyatakan

bahwa setiap modul atau kelas seharusnya memiliki satu alasan untuk

berubah. Ketidakterapan prinsip ini menyebabkan meningkatnya

kompleksitas internal kelas dan menyulitkan pengembang dalam memahami

peran serta alur logika program secara komprehensif (Wang, Z., Ling, Dkj,.

2025).

Tingginya kompleksitas kode juga tercermin dari logika program yang

saling terkait erat antar modul. Menurut teori software complexity,

kompleksitas yang tinggi akan berdampak langsung pada menurunnya

keterbacaan (readability) dan kemudahan analisis kode. Kode yang kompleks

membutuhkan usaha kognitif yang lebih besar bagi pengembang untuk

memahami hubungan antar bagian sistem, sehingga proses analisis,

debugging, dan modifikasi menjadi lebih lambat dan rentan terhadap

kesalahan. Kondisi ini sejalan dengan pandangan bahwa kompleksitas

merupakan salah satu faktor utama yang menurunkan kualitas maintainability

 133

perangkat lunak (Applying SOLID principles for the refactoring of legacy code

2024).

Selain kompleksitas, tingkat ketergantungan (coupling) antar modul

pada kode sumber sebelum penerapan prinsip desain yang baik juga tergolong

tinggi. Modul-modul dalam sistem saling bergantung secara langsung pada

implementasi konkret, bukan pada abstraksi. Berdasarkan teori coupling and

cohesion, tingginya coupling akan mengurangi fleksibilitas sistem dan

meningkatkan risiko terjadinya efek domino ketika dilakukan perubahan.

Setiap modifikasi pada satu modul berpotensi memengaruhi modul lain yang

bergantung padanya, sehingga memperbesar kemungkinan munculnya

kesalahan baru dan meningkatkan biaya pemeliharaan.

Kondisi ini menunjukkan bahwa kode sumber belum dirancang untuk

menghadapi perubahan secara adaptif. Padahal, menurut konsep software

evolution, perubahan merupakan keniscayaan dalam siklus hidup perangkat

lunak. Sistem yang tidak dirancang dengan mempertimbangkan perubahan

akan mengalami penurunan kualitas secara progresif seiring bertambahnya

fitur dan kebutuhan baru. Rendahnya fleksibilitas desain pada kode sumber

sebelum penerapan prinsip SOLID dan design patterns menegaskan bahwa

perangkat lunak berada pada kondisi yang rentan terhadap degradasi kualitas

dalam jangka panjang (Understanding the importance of design patterns in

software development., 2025).

Lebih lanjut, lemahnya pemisahan tanggung jawab dan tingginya

ketergantungan antar komponen berdampak langsung pada aspek lain dari

maintainability, seperti modifiability dan testability. Kode yang sulit

dipisahkan secara modular akan menyulitkan proses pengujian unit, karena

satu modul tidak dapat diuji secara independen tanpa melibatkan modul lain.

Hal ini bertentangan dengan prinsip desain perangkat lunak yang

 134

menekankan pentingnya modularitas sebagai dasar untuk membangun sistem

yang mudah diuji dan dipelihara.

Temuan-temuan tersebut memperkuat permasalahan yang telah

diuraikan pada latar belakang penelitian, yaitu bahwa rendahnya

maintainability kode sumber bukan semata-mata disebabkan oleh ukuran

atau jumlah baris kode, melainkan oleh kualitas desain dan struktur kode itu

sendiri. Dengan demikian, kondisi kode sumber sebelum penerapan prinsip

SOLID dan design patterns dapat dipandang sebagai representasi dari praktik

pengembangan yang kurang memperhatikan prinsip desain, yang pada

akhirnya berdampak negatif terhadap maintainability perangkat lunak secara

keseluruhan.

Perubahan Struktur Kode Setelah Penerapan Prinsip SOLID dan Design

Patterns

Hasil proses refactoring kode sumber dengan menerapkan prinsip

SOLID dan design patterns menunjukkan adanya perubahan struktural yang

signifikan terhadap arsitektur perangkat lunak. Salah satu perubahan paling

menonjol terlihat pada penerapan Single Responsibility Principle (SRP), yang

mendorong pemisahan fungsi dan tanggung jawab kelas secara lebih jelas.

Setiap kelas dirancang untuk menangani satu tujuan spesifik, sehingga

kompleksitas internal kelas dapat ditekan. Menurut teori desain berorientasi

objek, pemisahan tanggung jawab yang baik akan meningkatkan cohesion dan

mengurangi beban kognitif pengembang dalam memahami logika program.

Kondisi ini secara langsung berdampak pada meningkatnya keterbacaan dan

kemudahan analisis kode sumber (Dharmayanti, D., & Bachtiar, A. M. 2025).

Selain itu, penerapan Dependency Inversion Principle (DIP) dan

Interface Segregation Principle (ISP) memberikan kontribusi penting dalam

menurunkan tingkat ketergantungan antar modul. Modul tingkat tinggi tidak

lagi bergantung secara langsung pada implementasi konkret modul tingkat

 135

rendah, melainkan bergantung pada abstraksi berupa antarmuka. Pendekatan

ini sejalan dengan teori loose coupling dalam rekayasa perangkat lunak, yang

menekankan bahwa sistem dengan tingkat ketergantungan rendah akan lebih

mudah dipelihara dan dikembangkan. Dengan berkurangnya ketergantungan

langsung antar komponen, perubahan pada satu modul tidak lagi

menimbulkan dampak signifikan terhadap modul lain, sehingga risiko

kesalahan akibat perubahan dapat diminimalkan.

Penerapan Interface Segregation Principle juga berperan dalam

meningkatkan kualitas desain dengan memastikan bahwa setiap antarmuka

hanya memuat metode yang benar-benar dibutuhkan oleh klien. Hal ini

mencegah terjadinya fat interface yang memaksa kelas untuk

mengimplementasikan metode yang tidak relevan. Berdasarkan teori desain

modular, antarmuka yang spesifik dan terfokus akan meningkatkan

fleksibilitas sistem serta memudahkan proses pengujian dan pengembangan

lanjutan. Dengan demikian, kode sumber menjadi lebih adaptif terhadap

perubahan kebutuhan tanpa harus melakukan modifikasi besar pada struktur

yang sudah ada (Rochimah, S., Akbar, R. J., & Langsari, K. 2025).

Penggunaan design patterns seperti Factory dan Strategy semakin

memperkuat fleksibilitas dan keteraturan struktur kode sumber. Factory

Pattern membantu memisahkan proses pembuatan objek dari penggunaan

objek itu sendiri, sehingga mendukung prinsip Open/Closed Principle dengan

memungkinkan penambahan jenis objek baru tanpa memodifikasi kode yang

sudah ada. Sementara itu, Strategy Pattern memungkinkan variasi perilaku

sistem diatur melalui komposisi, bukan pewarisan, sehingga mempermudah

penggantian atau penambahan algoritma tanpa mengganggu struktur utama

sistem (Gamma, E., Helm, R., Johnson, R., & Vlissides, J. 2021). Menurut teori

reusable design, pola-pola desain ini membantu menghindari solusi ad-hoc dan

mendorong penggunaan struktur desain yang telah teruji dan mudah

dipahami oleh pengembang lain (Ramachandrappa, N. C. 2024).

 136

Secara keseluruhan, penerapan prinsip SOLID dan design patterns

menghasilkan perubahan paradigma desain dari struktur kode yang kaku dan

saling bergantung menjadi struktur yang lebih modular, fleksibel, dan

terorganisasi. Kode sumber tidak hanya menjadi lebih mudah dipahami, tetapi

juga lebih siap menghadapi perubahan dan pengembangan di masa depan.

Temuan ini memperkuat teori dalam rekayasa perangkat lunak yang

menyatakan bahwa kualitas desain memiliki peran sentral dalam

meningkatkan maintainability, serta menegaskan bahwa penerapan prinsip

desain yang tepat merupakan investasi jangka panjang dalam pengembangan

perangkat lunak yang berkelanjutan.

Analisis Dampak Penerapan terhadap Maintainability Kode Sumber

Hasil perbandingan kondisi kode sumber sebelum dan sesudah

penerapan prinsip SOLID dan design patterns menunjukkan adanya

peningkatan maintainability yang signifikan. Kode sumber yang telah melalui

proses refactoring menjadi lebih mudah dipahami, dianalisis, diuji, dan

dimodifikasi. Perubahan ini tidak hanya bersifat visual atau struktural, tetapi

juga mencerminkan perbaikan mendasar pada kualitas desain perangkat

lunak. Menurut teori kualitas perangkat lunak, maintainability sangat

dipengaruhi oleh tingkat kompleksitas, modularitas, dan konsistensi struktur

kode. Dengan menurunnya kompleksitas dan meningkatnya modularitas,

beban kognitif pengembang dalam memahami sistem menjadi lebih rendah,

sehingga proses pemeliharaan dapat dilakukan secara lebih efisien (Maulana,

M. I., Sabrina, P. N., & Ramadhan, E. 2024).

Penurunan kompleksitas dan berkurangnya ketergantungan antar

modul memberikan dampak positif yang nyata terhadap kemampuan sistem

dalam menghadapi perubahan. Berdasarkan konsep changeability dan

modifiability dalam standar kualitas perangkat lunak, sistem yang memiliki

ketergantungan rendah akan lebih mudah disesuaikan tanpa menimbulkan

 137

dampak luas pada bagian lain dari sistem. Temuan ini menunjukkan bahwa

penerapan prinsip SOLID dan design patterns mampu meningkatkan

fleksibilitas desain, sehingga perubahan atau penambahan fitur dapat

dilakukan dengan risiko kesalahan yang lebih kecil dan waktu pemeliharaan

yang lebih singkat (Putraadinatha, I. G. B. V., Suwawi, D. D. J., & Puspitasari, S.

Y. 2021).

Meskipun hasil refactoring menunjukkan adanya peningkatan jumlah

kelas dan baris kode akibat pemisahan tanggung jawab dan penggunaan

abstraksi, kondisi ini tidak berdampak negatif terhadap maintainability.

Sebaliknya, peningkatan jumlah kelas justru mencerminkan desain yang lebih

modular dan terstruktur (Hilalludin., 2025). Dalam teori rekayasa perangkat

lunak, jumlah baris kode bukanlah indikator utama kualitas, melainkan

bagaimana kode tersebut diorganisasikan dan dirancang. Kode yang lebih

panjang namun terstruktur dengan baik akan lebih mudah dipahami dan

dipelihara dibandingkan kode yang lebih singkat tetapi kompleks dan saling

bergantung.

Dari perspektif maintainability metrics, peningkatan kualitas desain ini

umumnya ditandai dengan meningkatnya nilai Maintainability Index serta

menurunnya nilai Cyclomatic Complexity dan Coupling Between Objects.

Meskipun metrik kuantitatif tersebut tidak disajikan secara rinci dalam

pembahasan ini, perubahan karakteristik struktur kode yang diamati

menunjukkan kecenderungan yang selaras dengan peningkatan nilai

maintainability secara keseluruhan. Hal ini memperkuat pandangan bahwa

penerapan prinsip desain yang baik memberikan dampak langsung terhadap

kualitas pemeliharaan perangkat lunak (Fowler, M. 2023).

Secara keseluruhan, temuan penelitian ini memberikan bukti empiris

bahwa maintainability tidak hanya ditentukan oleh aspek ukuran kode, tetapi

terutama oleh kualitas desain dan arsitektur perangkat lunak. Penerapan

 138

prinsip SOLID dan design patterns terbukti mampu mengatasi permasalahan

rendahnya maintainability yang diuraikan pada latar belakang penelitian,

dengan cara mengurangi kompleksitas, meningkatkan modularitas, dan

memperbaiki struktur kode sumber (Bass, L., Clements, P., & Kazman, R.

2023). Dengan demikian, hasil penelitian ini menegaskan bahwa penerapan

prinsip desain yang tepat merupakan strategi yang efektif dan berkelanjutan

dalam meningkatkan kualitas perangkat lunak, khususnya dari aspek

maintainability.

KESIMPULAN

Berdasarkan hasil dan pembahasan yang telah diuraikan, dapat

disimpulkan bahwa penerapan prinsip SOLID dan design patterns

memberikan pengaruh yang signifikan terhadap peningkatan maintainability

kode sumber perangkat lunak. Refactoring yang dilakukan dengan mengacu

pada prinsip Single Responsibility, Dependency Inversion, dan Interface

Segregation terbukti mampu menghasilkan struktur kode yang lebih modular,

terorganisasi, dan mudah dipahami. Selain itu, pemanfaatan design patterns

seperti Factory dan Strategy memperkuat fleksibilitas desain sistem, sehingga

perubahan maupun penambahan fitur dapat dilakukan tanpa menimbulkan

dampak besar pada bagian kode lainnya. Temuan ini menunjukkan bahwa

pendekatan desain berorientasi objek yang baik tidak hanya berdampak pada

kualitas teknis kode, tetapi juga pada efisiensi proses pengembangan dan

pemeliharaan perangkat lunak.

Lebih lanjut, penelitian ini menegaskan bahwa maintainability tidak

semata-mata ditentukan oleh jumlah baris kode atau kompleksitas visual,

melainkan oleh kualitas desain dan keteraturan struktur kode. Meskipun

penerapan prinsip SOLID dan design patterns dapat meningkatkan jumlah

kelas dan abstraksi, hal tersebut justru memperbaiki keterbacaan, kemudahan

pengujian, serta keberlanjutan pengembangan sistem dalam jangka panjang.

 139

Dengan demikian, hasil penelitian ini memberikan kontribusi teoretis dan

praktis bahwa penerapan prinsip SOLID dan design patterns merupakan

solusi yang efektif dalam mengatasi permasalahan rendahnya maintainability

kode sumber, sebagaimana diidentifikasi pada latar belakang penelitian, serta

layak direkomendasikan sebagai praktik terbaik dalam pengembangan

perangkat lunak modern.

DAFTAR PUSTAKA

Alhunaiti, S. A. B. A., & Khan, M. S. (2023). The impact of design patterns on software

quality and maintainability. Journal of Student Research. (Jurnal Penelitian

Mahasiswa)

Kevin, A., & Kurniawan, H. C. (2025). Analisis pengaruh design pattern terhadap

pemeliharaan perangkat lunak Learning Management System. Jurnal

Telematika. (journal.ithb.ac.id)

Rhamadhan, W. S., Daniyudin, J., El Sofya, D. R. Z., Hakim, L., & Hakim, L. (2025).

Implementasi metode PXP dan prinsip SOLID untuk integrasi modul pada

SIMPUSWANGI Banyuwangi. SESSION: Software Dev & Eng.

(jurnal.poliwangi.ac.id)

Azhizi, M. H., & Yaqin, M. A. (2024). Analisis penggunaan pemrograman berorientasi

objek terhadap maintainability perangkat lunak menggunakan ODOO. Journal

Automation Computer Information System, 4(2), 50–59. (jacis.pubmedia.id)

Saad, A. (2025). Enhancing software development efficiency: The role of design

patterns in code reusability and flexibility. International Journal of

Engineering, Business and Management, 9(1), 81–88. (aipublications.com)

Dharmayanti, D., & Bachtiar, A. M. (2025). Implementation of clean code and design

pattern to improve maintainability in content marketing application. AIP

Conference Proceedings, 3200, 040018. (simlitabmas.unikom.ac.id)

Rochimah, S., Akbar, R. J., & Langsari, K. (2025). Investigating design patterns’ impact

on application performance and complexity. IPTEK The Journal for

Technology and Science. (iptek.its.ac.id)

Ramachandrappa, N. C. (2024). SOLID design principles in software engineering.

International Journal of Computer Trends and Technology, 72(9), 18–23.

(Seventh Sense Research Group®)

Maulana, M. I., Sabrina, P. N., & Ramadhan, E. (2024). Peningkatan kualitas efficiency

dan maintainability pada sistem informasi web sekolah dengan refactoring.

Seminar Nasional CORISINDO 2024. (corisindo.utb-univ.ac.id)

 140

Putraadinatha, I. G. B. V., Suwawi, D. D. J., & Puspitasari, S. Y. (2021). Pengaruh design

pattern terhadap maintainability aplikasi mobile. eProceedings of

Engineering. (openlibrarypublications.telkomuniversity.ac.id)

Shrestha, J. (2025). Evaluating the application of SOLID principles in modern AI

framework architectures. arXiv preprint arXiv:2503.13786. (arXiv)

Wang, Z., Ling, R., Wang, C., Yu, Y., Li, Z., Xiong, F., & Zhang, W. (2025). MaintainCoder:

Maintainable code generation under dynamic requirements. arXiv preprint

arXiv:2503.24260. (arXiv)

Applying SOLID principles for the refactoring of legacy code (2024). Journal of

Systems and Software. (ScienceDirect)

Understanding the importance of design patterns in software development (2025).

SSRN Electronic Journal. (SSRN)

Martin, R. C. (2024). Clean Architecture: A Craftsman’s Guide to Software Structure

and Design. Prentice Hall.

Fowler, M. (2023). Refactoring: Improving the Design of Existing Code (2nd ed.).

Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (2021). Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley.

Schmidt, D. C., Stal, M., Rohnert, H., & Buschmann, F. (2022). Pattern-Oriented

Software Architecture Volume 2: Patterns for Concurrent and Networked

Objects. Wiley.

Bass, L., Clements, P., & Kazman, R. (2023). Software Architecture in Practice (4th ed.).

Addison-Wesley.

Zohri, M. H., & Hilalludin, H. (2025). Pemikiran Ibn Jinni Tentang Linguistik Arab Dan

Relevansinya Bagi Kajian Linguistik. Qawa’id: Jurnal Bahasa Dan Sastra Arab,

1(01), 25-35.

Sugari, D., & Hilalludin, H. (2025). Kontribusi Psikologi Perkembangan dalam Strategi

Pembelajaran di Sekolah. Jurnal Ar-Ruhul Ilmi: Jurnal Pendidikan Dan

Pemikiran Islam, 1(01), 47-61.

Saputra, J., Hilalludin, H., & Gibran, I. R. (2024). Peran Kepemimpinan Kepala Sekolah

dan Profesionalisme Guru Dalam Meningkatkan Mutu Pendidikan Indonesia.

Jurnal Pendidikan Dan Ilmu Sosial (Jupendis), 2(4), 163-172.

Sugari, D., & Hilalludin, H. (2025). Transformasi Pendidikan di Era Digital Peluang

danTantangan bagi Generasi Muda. LUXFIA: Journal of Multidisciplinary

Research, 1(1), 57-68.

Sugari, D., & Hilalludin, H. (2025). Optimalisasi Fungsi Masjid Sebagai Pusat Ibadah,

Pendidikan, dan Sosial Masyarakat Melalui Program Pengabdian di Masjid Al-

 141

Muttaqin Semin, Gunungkidul. IQOMAH: Jurnal Pengabdian Kepada

Masyarakat, 1(01), 50-63.

Sugari, D., & Hilalludin, H. (2025). Peran Maqashid Syariah dalam Pengembangan

Produk Perbankan Islam yang Berkelanjutan. AL HILALI: Jurnal Perbankan

Dan Ekonomi Islam, 1(1), 01-15.

