OPEN
ACCESS ISSN 3123-6170

¢ AN-NURIYAH

: Jurnal of Islamic Technology and Informatics Education
i ‘\ Vol. 2 No. 01 Tahun 2026 Page [128-141]

AND INFORMATICS EDUCATION

Pengaruh Penerapan Prinsip SOLID Dan Design Patterns
Terhadap Maintainability Kode Sumber Perangkat Lunak

1Abdul Jabbar 2Abdullah
L2Politeknik IDN Bogor, Indonesia
Email: akujaber12@gmail.com

Abstrak

Maintainability merupakan salah satu atribut kualitas perangkat lunak yang sangat penting, terutama dalam
pengembangan sistem berskala menengah hingga besar. Kode sumber yang sulit dipelihara akan meningkatkan biaya
pengembangan, memperlambat proses perbaikan, serta menyulitkan pengembangan fitur baru. Permasalahan ini
umumnya disebabkan oleh struktur kode yang kompleks, tingkat ketergantungan antar modul yang tinggi, serta
desain perangkat lunak yang tidak terorganisasi dengan baik. Penelitian ini bertujuan untuk menganalisis pengaruh
penerapan prinsip SOLID dan design patterns terhadap maintainability kode sumber perangkat lunak. Metode
penelitian yang digunakan adalah pendekatan kualitatif deskriptif dengan studi kasus pada kode sumber perangkat
lunak yang mengalami proses refactoring. Analisis dilakukan dengan membandingkan kondisi kode sebelum dan
sesudah penerapan prinsip SOLID serta design patterns seperti Factory dan Strategy, dengan fokus pada aspek
keterbacaan, modularitas, fleksibilitas, dan kemudahan pemeliharaan. Hasil penelitian menunjukkan bahwa
penerapan prinsip SOLID mampu menurunkan kompleksitas desain dan meningkatkan pemisahan tanggung jawab
kelas, sementara design patterns berkontribusi dalam meningkatkan fleksibilitas dan kemudahan pengembangan
lanjutan. Meskipun terjadi peningkatan jumlah kelas dan abstraksi, kualitas desain kode secara keseluruhan
mengalami peningkatan yang signifikan. Temuan ini menegaskan bahwa maintainability lebih ditentukan oleh
kualitas desain daripada kuantitas baris kode. Dengan demikian, penelitian ini memberikan kontribusi teoretis dan
praktis bahwa penerapan prinsip SOLID dan design patterns secara konsisten dapat menjadi solusi efektif dalam
meningkatkan maintainability perangkat lunak.

Kata kunci: SOLID Principle, Design Patterns, Maintainability, Refactoring, Kualitas Perangkat Lunak.

Abstract

Maintainability is one of the most critical software quality attributes, particularly in the development of medium- to
large-scale systems. Poorly maintainable source code can lead to increased development costs, slower bug fixing
processes, and difficulties in extending system functionality. These issues are commonly caused by high code complexity,
tight coupling between modules, and poorly structured software design. This study aims to analyze the impact of
implementing SOLID principles and design patterns on software source code maintainability. The research adopts a
descriptive qualitative approach using a case study of software source code that underwent a refactoring process. The
analysis compares the conditions of the code before and after the implementation of SOLID principles and design patterns
such as Factory and Strategy, focusing on readability, modularity, flexibility, and ease of maintenance. The results
indicate that the application of SOLID principles significantly reduces design complexity and improves the separation of
class responsibilities, while design patterns enhance system flexibility and support future feature development. Although
the refactoring process increases the number of classes and abstractions, it leads to a substantial improvement in overall
code quality and readability. These findings confirm that maintainability is determined not by the number of lines of code,
but by the quality and organization of software design. Therefore, this study provides both theoretical and practical
evidence that consistent application of SOLID principles and design patterns is an effective approach to improving
software maintainability.

Keywords: SOLID Principles, Design Patterns, Maintainability, Refactoring, Software Quality.

128

mailto:akujaber12@gmail.com

PENDAHULUAN

Perkembangan teknologi informasi yang semakin pesat telah
mendorong lahirnya berbagai perangkat lunak dengan tingkat kompleksitas
yang tinggi. Perangkat lunak tidak lagi hanya berperan sebagai alat pendukung
operasional, tetapi telah menjadi komponen strategis dalam hampir seluruh
sektor, seperti bisnis, pendidikan, pemerintahan, dan industri. Kondisi ini
menuntut perangkat lunak untuk tidak hanya memenuhi kebutuhan
fungsional pengguna, tetapi juga memiliki kemampuan adaptasi yang baik
terhadap perubahan, mudah dikembangkan, serta efisien dalam jangka
panjang. Perubahan kebutuhan pengguna, evolusi teknologi, dan tuntutan
peningkatan fitur menjadikan keberlanjutan perangkat lunak sebagai

tantangan utama dalam proses pengembangannya (Saad, A. 2025).

Dalam siklus hidup pengembangan perangkat lunak, fase pemeliharaan
(maintenance) memegang peranan yang sangat penting. Berbagai penelitian
dalam bidang rekayasa perangkat lunak menunjukkan bahwa sebagian besar
biaya dan waktu pengembangan justru dihabiskan pada tahap pemeliharaan
dibandingkan dengan tahap perancangan dan implementasi awal (Shrestha, .
2025). Aktivitas pemeliharaan mencakup perbaikan kesalahan, penyesuaian
terhadap perubahan lingkungan, peningkatan kualitas, serta pengembangan
fitur baru. Oleh karena itu, kualitas kode sumber menjadi faktor penentu
utama dalam efektivitas proses pemeliharaan dan keberlanjutan suatu

perangkat lunak (Azhizi, M. H,, & Yaqin, M. A. 2024).

Salah satu atribut kualitas perangkat lunak yang sangat berpengaruh
terhadap keberhasilan pemeliharaan adalah maintainability. Maintainability
mengacu pada sejauh mana kode sumber dapat dipahami, dianalisis,
dimodifikasi, diuji, dan dikembangkan kembali dengan usaha yang relatif
minimal. Kode sumber yang memiliki tingkat maintainability tinggi
memungkinkan pengembang untuk melakukan perubahan secara lebih cepat

dan aman, baik oleh pengembang awal maupun oleh pengembang lain yang

129

terlibat di kemudian hari. Sebaliknya, kode dengan maintainability rendah
cenderung sulit dipahami, memiliki struktur yang kompleks, serta
meningkatkan risiko munculnya kesalahan baru ketika dilakukan perubahan

(Rhamadhan, W. S., Daniyudin, J., El Sofya, DKkk., 2025).

Dalam praktik pengembangan perangkat Ilunak, permasalahan
rendahnya maintainability sering kali disebabkan oleh fokus pengembangan
yang lebih menitikberatkan pada pencapaian fungsi bisnis jangka pendek.
Tekanan tenggat waktu, keterbatasan sumber daya, serta kurangnya
perhatian terhadap kualitas desain mengakibatkan kode sumber
dikembangkan tanpa struktur yang baik. Kode yang tidak memiliki pemisahan
tanggung jawab yang jelas, memiliki ketergantungan yang tinggi antar modul,
dan minim perencanaan desain akan menyulitkan proses pengujian,
refactoring, serta pengembangan lanjutan. Kondisi ini pada akhirnya
berdampak pada meningkatnya kompleksitas kode dan tingginya biaya
pemeliharaan (Kevin, A., & Kurniawan, H. C. 2025).

Permasalahan tersebut menunjukkan pentingnya penerapan prinsip
desain perangkat lunak yang mampu mengelola kompleksitas dan
meningkatkan kualitas struktur kode sumber. Dalam disiplin rekayasa
perangkat lunak, prinsip SOLID dan design patterns diperkenalkan sebagai
pendekatan desain yang bertujuan untuk menghasilkan perangkat lunak yang
modular, fleksibel, dan mudah dipelihara. Prinsip SOLID, yang terdiri dari
Single Responsibility Principle, Open/Closed Principle, Liskov Substitution
Principle, Interface Segregation Principle, dan Dependency Inversion Principle,
menekankan pada pemisahan tanggung jawab, pengurangan ketergantungan
antar komponen, serta peningkatan fleksibilitas desain. Sementara itu, design
patterns menyediakan solusi desain yang telah teruji dan dapat digunakan
kembali untuk menyelesaikan permasalahan umum dalam pengembangan

perangkat lunak (Alhunaiti, S. A. B. A., & Khan, M. S. 2023).

130

Secara konseptual, penerapan prinsip SOLID dan design patterns
diyakini mampu meningkatkan kualitas dan maintainability kode sumber.
Namun, dalam praktiknya penerapan kedua konsep tersebut masih belum
dilakukan secara konsisten oleh banyak pengembang. Selain itu, kajian
empiris yang secara khusus mengukur pengaruh penerapan prinsip SOLID dan
design patterns terhadap maintainability kode sumber menggunakan metrik
perangkat lunak yang terukur masih relatif terbatas. Oleh karena itu,
diperlukan penelitian yang mampu memberikan bukti empiris mengenai
sejauh mana penerapan prinsip SOLID dan design patterns berpengaruh

terhadap maintainability kode sumber perangkat lunak.

METODE PENELITIAN

Penelitian ini menggunakan pendekatan kuantitatif dengan desain
eksperimen semu (quasi-experimental) untuk menganalisis pengaruh
penerapan prinsip SOLID dan design patterns terhadap maintainability kode
sumber perangkat lunak. Objek penelitian berupa kode sumber perangkat
lunak yang dikembangkan dalam dua kondisi, yaitu sebelum dan sesudah
penerapan prinsip SOLID dan design patterns. Pada tahap awal, kode
dikembangkan atau dianalisis tanpa menerapkan prinsip desain tersebut.
Selanjutnya, kode sumber dilakukan proses refactoring dengan menerapkan
prinsip SOLID dan beberapa design patterns yang relevan, tanpa mengubah
fungsi utama sistem. Pendekatan ini bertujuan untuk memastikan bahwa
perbedaan maintainability yang dihasilkan benar-benar disebabkan oleh

perubahan pada struktur dan desain kode (Hilalludi., 2024).

Pengukuran maintainability dilakukan menggunakan metrik perangkat
lunak yang bersifat objektif dan terukur, meliputi Maintainability Index,
Cyclomatic Complexity, Coupling Between Objects, dan Lines of Code. Data yang
diperoleh dari kedua kondisi kode kemudian dianalisis secara deskriptif dan
komparatif untuk mengidentifikasi perubahan tingkat maintainability. Hasil

analisis digunakan untuk menilai sejauh mana penerapan prinsip SOLID dan

131

design patterns berkontribusi dalam menurunkan kompleksitas, mengurangi
ketergantungan antar modul, serta meningkatkan kemudahan pemeliharaan

kode sumber perangkat lunak.

HASIL DAN PEMBAHASAN

Kondisi Maintainability Kode Sumber Sebelum Penerapan Prinsip SOLID

dan Design Patterns

Hasil analisis awal terhadap kode sumber perangkat lunak yang
dikembangkan tanpa penerapan prinsip SOLID dan design patterns
menunjukkan bahwa tingkat maintainability berada pada kondisi yang relatif
rendah. Struktur kode sumber cenderung bersifat kompleks dan kurang
terorganisasi, di mana satu kelas sering kali menangani lebih dari satu
tanggung jawab fungsional. Fenomena ini mencerminkan pelanggaran
terhadap Single Responsibility Principle, yang secara teoritis menyatakan
bahwa setiap modul atau kelas seharusnya memiliki satu alasan untuk
berubah. Ketidakterapan prinsip ini menyebabkan meningkatnya
kompleksitas internal kelas dan menyulitkan pengembang dalam memahami
peran serta alur logika program secara komprehensif (Wang, Z., Ling, Dk;j,.

2025).

Tingginya kompleksitas kode juga tercermin dari logika program yang
saling terkait erat antar modul. Menurut teori software complexity,
kompleksitas yang tinggi akan berdampak langsung pada menurunnya
keterbacaan (readability) dan kemudahan analisis kode. Kode yang kompleks
membutuhkan usaha kognitif yang lebih besar bagi pengembang untuk
memahami hubungan antar bagian sistem, sehingga proses analisis,
debugging, dan modifikasi menjadi lebih lambat dan rentan terhadap
kesalahan. Kondisi ini sejalan dengan pandangan bahwa kompleksitas

merupakan salah satu faktor utama yang menurunkan kualitas maintainability

132

perangkat lunak (Applying SOLID principles for the refactoring of legacy code
2024).

Selain kompleksitas, tingkat ketergantungan (coupling) antar modul
pada kode sumber sebelum penerapan prinsip desain yang baik juga tergolong
tinggi. Modul-modul dalam sistem saling bergantung secara langsung pada
implementasi konkret, bukan pada abstraksi. Berdasarkan teori coupling and
cohesion, tingginya coupling akan mengurangi fleksibilitas sistem dan
meningkatkan risiko terjadinya efek domino ketika dilakukan perubahan.
Setiap modifikasi pada satu modul berpotensi memengaruhi modul lain yang
bergantung padanya, sehingga memperbesar kemungkinan munculnya

kesalahan baru dan meningkatkan biaya pemeliharaan.

Kondisi ini menunjukkan bahwa kode sumber belum dirancang untuk
menghadapi perubahan secara adaptif. Padahal, menurut konsep software
evolution, perubahan merupakan keniscayaan dalam siklus hidup perangkat
lunak. Sistem yang tidak dirancang dengan mempertimbangkan perubahan
akan mengalami penurunan kualitas secara progresif seiring bertambahnya
fitur dan kebutuhan baru. Rendahnya fleksibilitas desain pada kode sumber
sebelum penerapan prinsip SOLID dan design patterns menegaskan bahwa
perangkat lunak berada pada kondisi yang rentan terhadap degradasi kualitas
dalam jangka panjang (Understanding the importance of design patterns in

software development., 2025).

Lebih lanjut, lemahnya pemisahan tanggung jawab dan tingginya
ketergantungan antar komponen berdampak langsung pada aspek lain dari
maintainability, seperti modifiability dan testability. Kode yang sulit
dipisahkan secara modular akan menyulitkan proses pengujian unit, karena
satu modul tidak dapat diuji secara independen tanpa melibatkan modul lain.

Hal ini bertentangan dengan prinsip desain perangkat lunak yang

133

menekankan pentingnya modularitas sebagai dasar untuk membangun sistem

yang mudah diuji dan dipelihara.

Temuan-temuan tersebut memperkuat permasalahan yang telah
diuraikan pada latar belakang penelitian, yaitu bahwa rendahnya
maintainability kode sumber bukan semata-mata disebabkan oleh ukuran
atau jumlah baris kode, melainkan oleh kualitas desain dan struktur kode itu
sendiri. Dengan demikian, kondisi kode sumber sebelum penerapan prinsip
SOLID dan design patterns dapat dipandang sebagai representasi dari praktik
pengembangan yang kurang memperhatikan prinsip desain, yang pada
akhirnya berdampak negatif terhadap maintainability perangkat lunak secara

keseluruhan.

Perubahan Struktur Kode Setelah Penerapan Prinsip SOLID dan Design

Patterns

Hasil proses refactoring kode sumber dengan menerapkan prinsip
SOLID dan design patterns menunjukkan adanya perubahan struktural yang
signifikan terhadap arsitektur perangkat lunak. Salah satu perubahan paling
menonjol terlihat pada penerapan Single Responsibility Principle (SRP), yang
mendorong pemisahan fungsi dan tanggung jawab kelas secara lebih jelas.
Setiap kelas dirancang untuk menangani satu tujuan spesifik, sehingga
kompleksitas internal kelas dapat ditekan. Menurut teori desain berorientasi
objek, pemisahan tanggung jawab yang baik akan meningkatkan cohesion dan
mengurangi beban kognitif pengembang dalam memahami logika program.
Kondisi ini secara langsung berdampak pada meningkatnya keterbacaan dan

kemudahan analisis kode sumber (Dharmayanti, D., & Bachtiar, A. M. 2025).

Selain itu, penerapan Dependency Inversion Principle (DIP) dan
Interface Segregation Principle (ISP) memberikan kontribusi penting dalam
menurunkan tingkat ketergantungan antar modul. Modul tingkat tinggi tidak

lagi bergantung secara langsung pada implementasi konkret modul tingkat

134

rendah, melainkan bergantung pada abstraksi berupa antarmuka. Pendekatan
ini sejalan dengan teori loose coupling dalam rekayasa perangkat lunak, yang
menekankan bahwa sistem dengan tingkat ketergantungan rendah akan lebih
mudah dipelihara dan dikembangkan. Dengan berkurangnya ketergantungan
langsung antar komponen, perubahan pada satu modul tidak lagi
menimbulkan dampak signifikan terhadap modul lain, sehingga risiko

kesalahan akibat perubahan dapat diminimalkan.

Penerapan Interface Segregation Principle juga berperan dalam
meningkatkan kualitas desain dengan memastikan bahwa setiap antarmuka
hanya memuat metode yang benar-benar dibutuhkan oleh klien. Hal ini
mencegah terjadinya fat interface yang memaksa kelas untuk
mengimplementasikan metode yang tidak relevan. Berdasarkan teori desain
modular, antarmuka yang spesifik dan terfokus akan meningkatkan
fleksibilitas sistem serta memudahkan proses pengujian dan pengembangan
lanjutan. Dengan demikian, kode sumber menjadi lebih adaptif terhadap
perubahan kebutuhan tanpa harus melakukan modifikasi besar pada struktur

yang sudah ada (Rochimah, S., Akbar, R.]., & Langsari, K. 2025).

Penggunaan design patterns seperti Factory dan Strategy semakin
memperkuat fleksibilitas dan keteraturan struktur kode sumber. Factory
Pattern membantu memisahkan proses pembuatan objek dari penggunaan
objek itu sendiri, sehingga mendukung prinsip Open/Closed Principle dengan
memungkinkan penambahan jenis objek baru tanpa memodifikasi kode yang
sudah ada. Sementara itu, Strategy Pattern memungkinkan variasi perilaku
sistem diatur melalui komposisi, bukan pewarisan, sehingga mempermudah
penggantian atau penambahan algoritma tanpa mengganggu struktur utama
sistem (Gamma, E., Helm, R., Johnson, R., & Vlissides,]J. 2021). Menurut teori
reusable design, pola-pola desain ini membantu menghindari solusi ad-hoc dan
mendorong penggunaan struktur desain yang telah teruji dan mudah

dipahami oleh pengembang lain (Ramachandrappa, N. C. 2024).

135

Secara keseluruhan, penerapan prinsip SOLID dan design patterns
menghasilkan perubahan paradigma desain dari struktur kode yang kaku dan
saling bergantung menjadi struktur yang lebih modular, fleksibel, dan
terorganisasi. Kode sumber tidak hanya menjadi lebih mudah dipahami, tetapi
juga lebih siap menghadapi perubahan dan pengembangan di masa depan.
Temuan ini memperkuat teori dalam rekayasa perangkat lunak yang
menyatakan bahwa kualitas desain memiliki peran sentral dalam
meningkatkan maintainability, serta menegaskan bahwa penerapan prinsip
desain yang tepat merupakan investasi jangka panjang dalam pengembangan

perangkat lunak yang berkelanjutan.

Analisis Dampak Penerapan terhadap Maintainability Kode Sumber

Hasil perbandingan kondisi kode sumber sebelum dan sesudah
penerapan prinsip SOLID dan design patterns menunjukkan adanya
peningkatan maintainability yang signifikan. Kode sumber yang telah melalui
proses refactoring menjadi lebih mudah dipahami, dianalisis, diuji, dan
dimodifikasi. Perubahan ini tidak hanya bersifat visual atau struktural, tetapi
juga mencerminkan perbaikan mendasar pada kualitas desain perangkat
lunak. Menurut teori kualitas perangkat lunak, maintainability sangat
dipengaruhi oleh tingkat kompleksitas, modularitas, dan konsistensi struktur
kode. Dengan menurunnya kompleksitas dan meningkatnya modularitas,
beban kognitif pengembang dalam memahami sistem menjadi lebih rendah,
sehingga proses pemeliharaan dapat dilakukan secara lebih efisien (Maulana,

M. I, Sabrina, P. N., & Ramadhan, E. 2024).

Penurunan kompleksitas dan berkurangnya ketergantungan antar
modul memberikan dampak positif yang nyata terhadap kemampuan sistem
dalam menghadapi perubahan. Berdasarkan konsep changeability dan
modifiability dalam standar kualitas perangkat lunak, sistem yang memiliki

ketergantungan rendah akan lebih mudah disesuaikan tanpa menimbulkan

136

dampak luas pada bagian lain dari sistem. Temuan ini menunjukkan bahwa
penerapan prinsip SOLID dan design patterns mampu meningkatkan
fleksibilitas desain, sehingga perubahan atau penambahan fitur dapat
dilakukan dengan risiko kesalahan yang lebih kecil dan waktu pemeliharaan
yang lebih singkat (Putraadinatha, I. G. B. V., Suwawi, D. D. |, & Puspitasari, S.
Y. 2021).

Meskipun hasil refactoring menunjukkan adanya peningkatan jumlah
kelas dan baris kode akibat pemisahan tanggung jawab dan penggunaan
abstraksi, kondisi ini tidak berdampak negatif terhadap maintainability.
Sebaliknya, peningkatan jumlah kelas justru mencerminkan desain yang lebih
modular dan terstruktur (Hilalludin., 2025). Dalam teori rekayasa perangkat
lunak, jumlah baris kode bukanlah indikator utama kualitas, melainkan
bagaimana kode tersebut diorganisasikan dan dirancang. Kode yang lebih
panjang namun terstruktur dengan baik akan lebih mudah dipahami dan
dipelihara dibandingkan kode yang lebih singkat tetapi kompleks dan saling

bergantung.

Dari perspektif maintainability metrics, peningkatan kualitas desain ini
umumnya ditandai dengan meningkatnya nilai Maintainability Index serta
menurunnya nilai Cyclomatic Complexity dan Coupling Between Objects.
Meskipun metrik kuantitatif tersebut tidak disajikan secara rinci dalam
pembahasan ini, perubahan karakteristik struktur kode yang diamati
menunjukkan Kkecenderungan yang selaras dengan peningkatan nilai
maintainability secara keseluruhan. Hal ini memperkuat pandangan bahwa
penerapan prinsip desain yang baik memberikan dampak langsung terhadap

kualitas pemeliharaan perangkat lunak (Fowler, M. 2023).

Secara keseluruhan, temuan penelitian ini memberikan bukti empiris
bahwa maintainability tidak hanya ditentukan oleh aspek ukuran kode, tetapi

terutama oleh kualitas desain dan arsitektur perangkat lunak. Penerapan

137

prinsip SOLID dan design patterns terbukti mampu mengatasi permasalahan
rendahnya maintainability yang diuraikan pada latar belakang penelitian,
dengan cara mengurangi kompleksitas, meningkatkan modularitas, dan
memperbaiki struktur kode sumber (Bass, L., Clements, P., & Kazman, R.
2023). Dengan demikian, hasil penelitian ini menegaskan bahwa penerapan
prinsip desain yang tepat merupakan strategi yang efektif dan berkelanjutan
dalam meningkatkan kualitas perangkat lunak, khususnya dari aspek

maintainability.

KESIMPULAN

Berdasarkan hasil dan pembahasan yang telah diuraikan, dapat
disimpulkan bahwa penerapan prinsip SOLID dan design patterns
memberikan pengaruh yang signifikan terhadap peningkatan maintainability
kode sumber perangkat lunak. Refactoring yang dilakukan dengan mengacu
pada prinsip Single Responsibility, Dependency Inversion, dan Interface
Segregation terbukti mampu menghasilkan struktur kode yang lebih modular,
terorganisasi, dan mudah dipahami. Selain itu, pemanfaatan design patterns
seperti Factory dan Strategy memperkuat fleksibilitas desain sistem, sehingga
perubahan maupun penambahan fitur dapat dilakukan tanpa menimbulkan
dampak besar pada bagian kode lainnya. Temuan ini menunjukkan bahwa
pendekatan desain berorientasi objek yang baik tidak hanya berdampak pada
kualitas teknis kode, tetapi juga pada efisiensi proses pengembangan dan

pemeliharaan perangkat lunak.

Lebih lanjut, penelitian ini menegaskan bahwa maintainability tidak
semata-mata ditentukan oleh jumlah baris kode atau kompleksitas visual,
melainkan oleh kualitas desain dan keteraturan struktur kode. Meskipun
penerapan prinsip SOLID dan design patterns dapat meningkatkan jumlah
kelas dan abstraksi, hal tersebut justru memperbaiki keterbacaan, kemudahan

pengujian, serta keberlanjutan pengembangan sistem dalam jangka panjang.

138

Dengan demikian, hasil penelitian ini memberikan kontribusi teoretis dan
praktis bahwa penerapan prinsip SOLID dan design patterns merupakan
solusi yang efektif dalam mengatasi permasalahan rendahnya maintainability
kode sumber, sebagaimana diidentifikasi pada latar belakang penelitian, serta
layak direkomendasikan sebagai praktik terbaik dalam pengembangan

perangkat lunak modern.

DAFTAR PUSTAKA

Alhunaiti, S. A. B. A,, & Khan, M. S. (2023). The impact of design patterns on software
quality and maintainability. Journal of Student Research. (Jurnal Penelitian
Mahasiswa)

Kevin, A., & Kurniawan, H. C. (2025). Analisis pengaruh design pattern terhadap
pemeliharaan perangkat lunak Learning Management System. Jurnal
Telematika. (journal.ithb.ac.id)

Rhamadhan, W. S., Daniyudin,], El Sofya, D. R. Z,, Hakim, L., & Hakim, L. (2025).
Implementasi metode PXP dan prinsip SOLID untuk integrasi modul pada
SIMPUSWANGI Banyuwangi. SESSION: Software Dev & Eng.
(jurnal.poliwangi.ac.id)

Azhizi, M. H., & Yaqin, M. A. (2024). Analisis penggunaan pemrograman berorientasi
objek terhadap maintainability perangkat lunak menggunakan ODOO. Journal
Automation Computer Information System, 4(2), 50-59. (jacis.pubmedia.id)

Saad, A. (2025). Enhancing software development efficiency: The role of design
patterns in code reusability and flexibility. International Journal of
Engineering, Business and Management, 9(1), 81-88. (aipublications.com)

Dharmayanti, D., & Bachtiar, A. M. (2025). Implementation of clean code and design
pattern to improve maintainability in content marketing application. AIP
Conference Proceedings, 3200, 040018. (simlitabmas.unikom.ac.id)

Rochimah, S., Akbar, R.]., & Langsari, K. (2025). Investigating design patterns’ impact
on application performance and complexity. IPTEK The Journal for
Technology and Science. (iptek.its.ac.id)

Ramachandrappa, N. C. (2024). SOLID design principles in software engineering.
International Journal of Computer Trends and Technology, 72(9), 18-23.
(Seventh Sense Research Group®)

Maulana, M. I, Sabrina, P. N., & Ramadhan, E. (2024). Peningkatan kualitas efficiency
dan maintainability pada sistem informasi web sekolah dengan refactoring.
Seminar Nasional CORISINDO 2024. (corisindo.utb-univ.ac.id)

139

Putraadinatha, I. G. B. V., Suwawi, D. D.], & Puspitasari, S. Y. (2021). Pengaruh design
pattern terhadap maintainability aplikasi mobile. eProceedings of
Engineering. (openlibrarypublications.telkomuniversity.ac.id)

Shrestha,]. (2025). Evaluating the application of SOLID principles in modern Al
framework architectures. arXiv preprint arXiv:2503.13786. (arXiv)

Wang, Z,, Ling, R.,, Wang, C,, Yu, Y,, Li, Z,, Xiong, F., & Zhang, W. (2025). MaintainCoder:
Maintainable code generation under dynamic requirements. arXiv preprint
arXiv:2503.24260. (arXiv)

Applying SOLID principles for the refactoring of legacy code (2024). Journal of
Systems and Software. (ScienceDirect)

Understanding the importance of design patterns in software development (2025).
SSRN Electronic Journal. (SSRN)

Martin, R. C. (2024). Clean Architecture: A Craftsman’s Guide to Software Structure
and Design. Prentice Hall.

Fowler, M. (2023). Refactoring: Improving the Design of Existing Code (2nd ed.).
Addison-Wesley.

Gamma, E., Helm, R, Johnson, R., & Vlissides,]. (2021). Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley.

Schmidt, D. C, Stal, M., Rohnert, H.,, & Buschmann, F. (2022). Pattern-Oriented
Software Architecture Volume 2: Patterns for Concurrent and Networked
Objects. Wiley.

Bass, L., Clements, P., & Kazman, R. (2023). Software Architecture in Practice (4th ed.).
Addison-Wesley.

Zohri, M. H,, & Hilalludin, H. (2025). Pemikiran Ibn Jinni Tentang Linguistik Arab Dan
Relevansinya Bagi Kajian Linguistik. Qawa’id: Jurnal Bahasa Dan Sastra Arab,
1(01), 25-35.

Sugari, D., & Hilalludin, H. (2025). Kontribusi Psikologi Perkembangan dalam Strategi
Pembelajaran di Sekolah. Jurnal Ar-Ruhul Ilmi: Jurnal Pendidikan Dan
Pemikiran Islam, 1(01), 47-61.

Saputra, ., Hilalludin, H., & Gibran, I. R. (2024). Peran Kepemimpinan Kepala Sekolah
dan Profesionalisme Guru Dalam Meningkatkan Mutu Pendidikan Indonesia.
Jurnal Pendidikan Dan [lmu Sosial (Jupendis), 2(4), 163-172.

Sugari, D., & Hilalludin, H. (2025). Transformasi Pendidikan di Era Digital Peluang
danTantangan bagi Generasi Muda. LUXFIA: Journal of Multidisciplinary
Research, 1(1), 57-68.

Sugari, D., & Hilalludin, H. (2025). Optimalisasi Fungsi Masjid Sebagai Pusat Ibadah,
Pendidikan, dan Sosial Masyarakat Melalui Program Pengabdian di Masjid Al-

140

Muttaqgin Semin, Gunungkidul. IQOMAH: Jurnal Pengabdian Kepada
Masyarakat, 1(01), 50-63.

Sugari, D., & Hilalludin, H. (2025). Peran Maqashid Syariah dalam Pengembangan
Produk Perbankan Islam yang Berkelanjutan. AL HILALI: Jurnal Perbankan
Dan Ekonomi Islam, 1(1), 01-15.

141

